Churn Prediction using Soft Computing
نویسنده
چکیده
منابع مشابه
Profit-based feature selection using support vector machines - General framework and an application for customer retention
Churn prediction is an important application of classification models that identify those customers most likely to attrite based on their respective characteristics described by e.g. socio-demographic and behavioral variables. Since nowadays more and more of such features are captured and stored in the respective computational systems, an appropriate handling of the resulting information overlo...
متن کاملInvestigating electrochemical drilling (ECD) using statistical and soft computing techniques
In the present study, five modeling approaches of RA, MLP, MNN, GFF, and CANFIS were applied so as to estimate the radial overcut values in electrochemical drilling process. For these models, four input variables, namely electrolyte concentration, voltage, initial machining gap, and tool feed rate, were selected. The developed models were evaluated in terms of their prediction capability with m...
متن کاملCustomer Churn Prediction in Cloud Computing by using Fuzzy Boosted Trees
Organizations always take part in competition and as the competition grows; they are more concern about their customers rather than products. Organization always focuses on customer’s behaviour to retain in market competition. Churn prediction models are developed to manage and control customer churn in order to retain existing customers. Churn prediction aims to predict profitable customers. T...
متن کاملHierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...
متن کاملA COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015